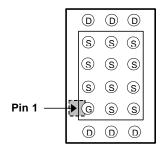


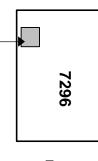
30V N-Channel PowerTrench^o BGA MOSFET

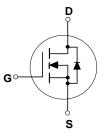
General Description

Combining Fairchild's advanced PowerTrench process with state-of-the-art BGA packaging, the FDZ7296 minimizes both PCB space and $R_{DS(ON)}$. This BGA MOSFET embodies a breakthrough in packaging technology which enables the device to combine excellent thermal transfer characteristics, high current handling capability, ultra-low profile packaging, low gate charge, and low $R_{DS(ON)}$.

Applications


 High-side Mosfet in DC-DC converters for Server and Notebook applications


Features


11 A, 30 V.

$$\begin{split} R_{\text{DS(ON)}} &= 8.5 \ \text{m}\Omega \ @ \ \text{V}_{\text{GS}} = 10 \ \text{V} \\ R_{\text{DS(ON)}} &= 12 \ \text{m}\Omega \ @ \ \text{V}_{\text{GS}} = 4.5 \ \text{V} \end{split}$$

- Occupies only 0.10 cm² of PCB area: 1/3 the area of SO-8.
- Ultra-thin package: less than 0.80 mm height when mounted to PCB.
- High performance trench technology for extremely low R_{DS(ON)}
- Optimized for low Qg and Qgd to enable fast switching and reduce CdV/dt gate coupling

Тор

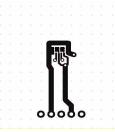
Absolute Maximum Ratings T_A=25°C unless otherwise noted

Pin 1 -

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		30	V
V _{GSS}	Gate-Source Voltage		±20	V
I _D	Drain Current – Continuous	(Note 1a)	11	A
	– Pulsed		20	
PD	Power Dissipation (Steady State)	(Note 1a)	2.1	W
т т	Operating and Storage Junction Temperature Range			
T_J, T_{STG}	Operating and Storage Junction Temperation	Ire Range	-55 to +150	°C
Therma	I Characteristics			
Therma R _{eJA}	I Characteristics Thermal Resistance, Junction-to-Ambient	(Note 1a)	60	°C/W
	I Characteristics			

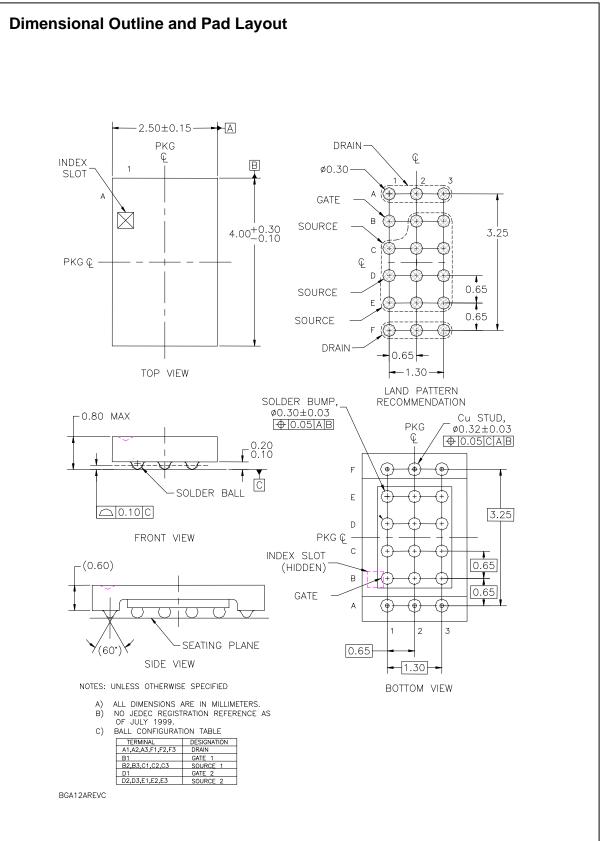
Device Marking	Device	Reel Size	Tape width	Quantity
7296	FDZ7296	7"	8mm	3000 units

©2004 Fairchild Semiconductor Corporation

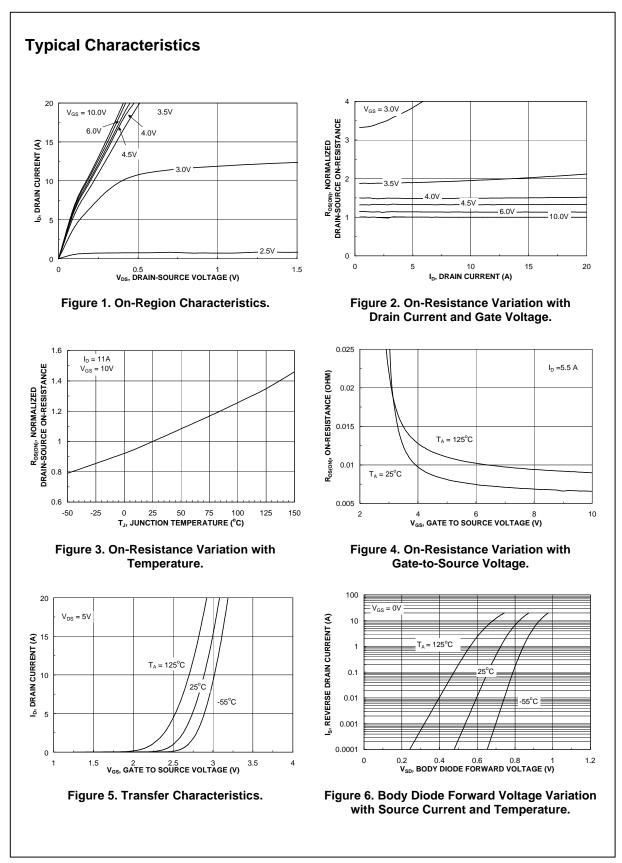

	_			_		
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, Referenced to 25°C		27		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 24 \text{ V}, \qquad V_{\text{GS}} = 0 \text{ V}$			1	μA
I _{GSS}	Gate–Body Leakage.	$V_{GS} = \pm 20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			±100	nA
On Chara	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{\text{DS}} = V_{\text{GS}}, \qquad I_{\text{D}} = 250 \ \mu\text{A}$	1	1.8	3	V
$\Delta V_{GS(th)} \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		-4.9		mV/°C
R _{DS(on)}	Static Drain–Source	$V_{GS} = 10 V$, $I_{D} = 11 A$		7	8.5	mΩ
	On-Resistance	$V_{GS} = 4.5V, I_D = 10 A$		9 9.1	12 13	
Dynamic	Characteristics	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 11 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C}$		9.1	15	
C _{iss}	Input Capacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$,		1520		pF
	Output Capacitance	f = 1.0 MHz		420		pF
C _{rss}	Reverse Transfer Capacitance			130		pF
g _{FS}	Forward Transconductance	$V_{DS} = 5 V$, $I_D = 11 A$		46		S
R _G	Gate Resistance	V _{GS} = 15 mV, f = 1.0 MHz		1.1		Ω
-	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{pp} = 15 V$ $I_p = 1 A$		10	20	ns
t _r	Turn-On Rise Time			4	8	ns
t _{d(off)}	Turn–Off Delay Time			27	43	ns
t _f	Turn–Off Fall Time	1		13	23	ns
Q _{g(TOT)}	Total Gate Charge at Vgs=10V			22	31	nC
Q _g	Total Gate Charge at Vgs=5V	$V_{DD} = 15 V$, $I_D = 11 A$,		12	17	nC
Q _{gs}	Gate-Source Charge			4.5		nC
Q _{gd}	Gate-Drain Charge]		3.1		nC
Drain-So	ource Diode Characteristics	and Maximum Ratings				
l _s	Maximum Continuous Drain-Source				1.7	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = 1.7 A$ (Note 2)		0.7	1.2	V
t _{rr}	Diode Reverse Recovery Time	I _F = 11A		28		nS
Q _{rr}	Diode Reverse Recovery Charge	$d_{iF}/d_t = 100 \text{ A}/\mu \text{s}$ (Note 2)		18		nC

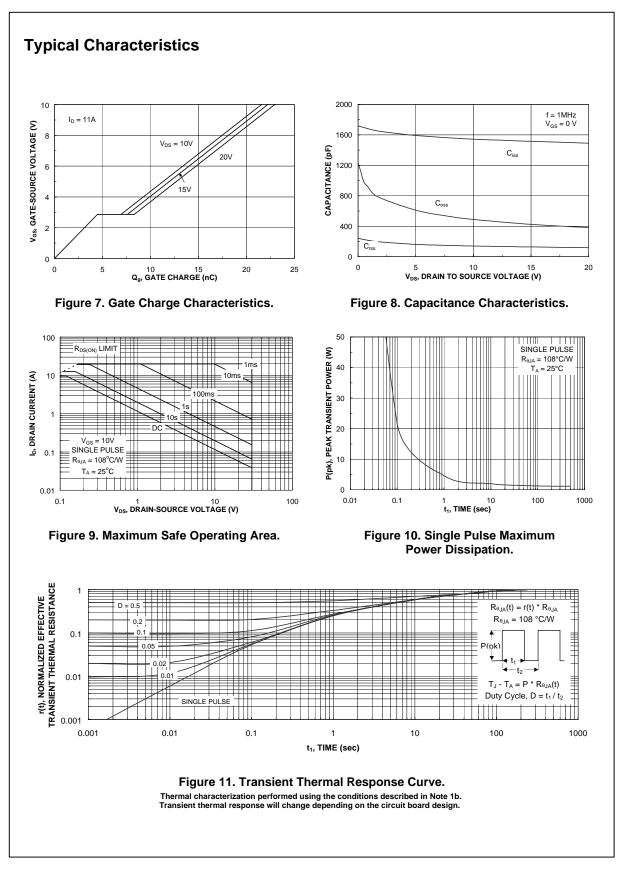
the circuit board side of the solder ball, $R_{\theta JB}$, is defined for reference. For $R_{\theta JC}$, the thermal reference point for the case is defined as the top surface of the copper chip carrier. $R_{\theta JC}$ and $R_{\theta JB}$ are guaranteed by design while $R_{\theta JA}$ is determined by the user's board design.

a)


108°C/W when mounted on a minimum pad of 2 oz copper

b)


Scale 1 : 1 on letter size paper


2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%

FDZ7296 Rev B(W)

FDZ7296 Rev B(W)

FDZ7296 Rev B(W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST®	ISOPLANAR™	Power247™	Stealth™
ActiveArray™	FASTr™	LittleFET™	PowerEdge™	SuperFET™
Bottomless™	FPS™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CoolFET™	FRFET™	MicroFET™	PowerTrench [®]	SuperSOT™-6
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QFET [®]	SuperSOT™-8
DOME™	GTO™່	MICROWIRE™	QS™	SyncFET™
EcoSPARK™	HiSeC™	MSX™	QT Optoelectronics [™]	TinyLogic [®]
E ² CMOS [™]	I²C™	MSXPro™	Quiet Series [™]	TINYOPTO™
EnSigna™	<i>i-Lo</i> ™	OCX™	RapidConfigure™	TruTranslation™
FACT™	ImpliedDisconnect™	OCXPro™	RapidConnect™	UHC™
FACT Quiet Seri	es™	OPTOLOGIC[®]	µSerDes™	UltraFET [®]
Across the boar	d. Around the world.™	OPTOPLANAR™	SILENT SWITCHER®	UniFET™
The Power Fran		PACMAN™	SMART START™	VCX™
Programmable A		POP™	SPM™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	•	Rev. I14